《等式与方程》教学反思

更新时间:2023-12-30 21:29:53
《等式与方程》教学反思

作为一位刚到岗的人民教师,课堂教学是我们的工作之一,在写教学反思的时候可以反思自己的教学失误,那么优秀的教学反思是什么样的呢?下面是小编帮大家整理的《等式与方程》教学反思,仅供参考,欢迎大家阅读。

《等式与方程》教学反思1

作为教师,我们都有这样的体会:自然界的万事万物,事物息息相关,都是有联系的。知识是人类已经认识的世界,知识与世界“互映”。形象地说,知识也像一张大网,所有的知识都有千丝万缕的关系。每次学习的新知识只是网上的几个“结”,它与原有的知识经验之间有着必然的联系。在教师备课的过程中,需要了解每一个知识点的地位,也就是不仅要知道这些知识的源头在哪里?还要清楚这些知识会流向哪里。特级教师吴汝萍老师在《教育研究与评论》杂志上也有过这么一段观点:“源”,就是知识的源头,这个知识从哪里来,现在处在什么的位置;“流”就是这一知识有哪些应用,将来要“流”向哪里。

众所周知,教师需要一方面对知识的“源”与“流”进行梳理,即所谓的备教材;另一方面,更要清楚在学生脑海中这些知识的“源”与“流”会呈现怎样的精彩,即所谓的备学生。这是每个老师进行课堂教学前需要做的功课。

那么,学生呢?学生在课堂学习前需要做些什么呢?他们是不是也需要进行对知识“源”与“流”进行个性化的解读,猜想与质疑呢?下面笔者就自己这几年的实践研究,做一个简单的阐述:

近三年,我在“协同教育理论”指导下开展“小学数学绿树课堂”的实践与研究,其中让学生在课堂学习之前进行准备学习(后面谓之备学)是一个重点研究课题。

既然大家都认为学生不是如一张白纸来到我们的课堂,学生都是有着丰富的已有经验、个性色彩站立在课堂里的。那么,我认为,不仅教师需要备课,学生也需要备学。在我实验的初期,经常有老师问我一些问题,比如,备学的目的是什么?是不是就是提前学习?备学需要做些什么呢?

新知识是网上的一小部分,那么学生完全有能力找到与新知识有关系的知识经验、生活经验和思维经验,这些都是脑中的已有的信息,完全可以在课前搜集,哪些知识与新知学习是相关的,新知中的哪些问题是感到疑惑的。搜集已知,捕捉问题,看似简单的两个步骤,其实正是学生为新知的学习进行着“网游”,这种主动的行为就是一种“习”,“学而时习之,不亦乐乎“,不仅积极影响着学生的学习状态,而且进一步巩固了以前学过的知识,发展了学生的思维,也为教师的备学生了解学情提供了极大的的支撑。

举一个实例吧!五年级下册第一章节学习《方程》,我这样指导学生进行备学:

1、搜集天平的知识(可以问家长,可以查资料。)

2、阅读书P1—2,有哪些知识是你已经学过的?一一列举出来。

3、阅读书本后,你产生了什么问题?一一列举出来。

4、阅读范老师博客上的《关于方程的资料(1)》。

备学中,孩子们的真实思考最可贵,听听他们是怎么说的吧!

1、孩子们认为自己懂的地方有:

陆瑶:方程这一单元,里面有一个等式是我学过的,但是这里面有一个未知数。

天奕:把一个没有余数的算式,加、减、乘、除都可以,把一个数变成“x”,这就是方程。

李好:我发现用x表示一个未知数,是我们低年级下学期学过的知识。(用字母表示数)可那学期学的字母是求不出来的,可这里的字母却是求出来的。

小睿:像2+1=3、3-1=2这样的式子叫等式,其实我们在一年级时就已经认识了等式。

萱萱:我知道有一些数量关系式可以让我们求出未知数:减数+差=被减数、被减数-减数=差、被减数-差=减数、积÷乘数=乘数、乘数×乘数=积、除数×商=被除数、被除数÷除数=商、被除数÷商=除数。

小立:比如8+○=19,那么求○是多少,只需要用19减8,○是11,在这里是一样的,只不过把○换成了x。

我无法想象我独立备课或与其他老师集体备课是否会有这么具体生动的教学资源,反正在我课前浏览的那么多教育网站中,没有搜索到这些鲜活的内容。这些来自孩子真实的“最近学习工作区”的声音,不正是课堂教学之“源”吗!

2、孩子们认为不懂的地方有:

秦秦:如果x+3<100,那x是多少?

戴戴:方程为什么含有未知数?

小雯:x可以表示未知数,那么abc可以表示未知数吗?

干干:方程一定要有等式才可以成立吗?范老师,我妈妈有时看到我一些难题不会,就写什么x的,我终于知道了方程。

小雨:方程是用来解决什么问题的?面积问题,数量关系……

我很欣赏小雨的问题,这正是知识之“流”呀!因为它道出了学习方程的意义是什么?我们学习它,到底用它来解决哪类问题?小雨的问题,提醒我在教学目标设定中,一定要让孩子们学完这个知识后,拥有这样的判断力,思考力。

清儿:等式和方程有什么不同,那它们又是什么关系呢?

炜炜:不明白等式和方程有什么区别。

不少孩子问这个问题,说明对于式子、等式和方程的逻辑关系,学生需要老师的引导帮助!

晓哲:怎样才能算出未知数?

呵呵,小家伙们总是思维敏捷,总是透过窗户,看到更远的风景。

小楠:方程可以有大于号、小于号吗?

课上交流以后,相信孩子们会有正确的认识。

小叠:有没有乘法方程式?

通过翻阅孩子们的备学,我发现,不仅老师需要知道数学知识的“源”与“流”,学生也有能力发现数学知识的“源”与“流”。在发现的过程中,学生不断思考,回想,建构合理的认知结构,同时思维向青草更青处漫溯。

备学以后的讨论更有意思:

小璜益:方程不是一个完整的等式,因为有一个数是多少还不知道。

萱萱:我爸爸在教我做一些课外题时,他用的就是方程。

小叠:方程里用x来替代数字。

孩子们聊到兴头上的时候,有个孩子问,怎么才能知道方程里的未知数是多少?我说,你们随便考考我,我都知道。

小岩:x+100>120。

小欣:这个不是方程,方程必须是等式,这个不是等式。

小恺:x+110=210。

小欣把110听成了120,就说,x等于90。

孩子们一片疾呼:x等于100呀!!!

还有几个孩子站起来振振有词的解释x等于100的原因。

呵呵,意外的听错数字,却让我看到了孩子有极强的学习能力,还没有教,其实他们已经有了一些经验。这些现象,又将成为下一场备学的起点。

每节课的开始,找到一些结点,让孩子们动起身心,铺一些知识小路,老师顺着孩子的思维去引导他们创造,探究,发现,总结,体会数学的简洁与抽象,发展自己思考的能力,那样的学习交流,是我所追逐的样子。

听听孩子们对备学的感性体会:

小欣:备学就像是吃饭前 ……此处隐藏6188个字……活动中,培养学生良好的习惯,让学生获得成功的体验,进一步树立学好数学的信心,激发学习数学的兴趣。

在新授过程中,以旧知为起点,学生都能接受方程的意义、等式与方程的关系、看图列出方程。但是在判断哪些是等式,哪些是方程时,6+x=14许多学生写成是方程、而漏写了等式。当补充习题上再次出现同类问题时,还是有相当部分的学生出现疏漏。这说明学生还是没有深入理解等式与方程之间的关系。怎么会漏了等式呢?第一、虽然学生一直接触的是等式,但是他们一直是直观上感知着不同的式子,但不知道其实含有"="的就是数学上的等式,更不用说等式的定义:左右两边相等的式子叫等式。学生的理解还不透彻、扎实。针对这一问题,我主要是让学生抓住等式的关键特征:"="。更进一步,如果有了"="还有了未知数,那这个等式还是方程。但是部分学生对于这样的式子

"+=100、60-a=55+b"不认为是方程。他们认为未知数一定是X、Y......,而不是其它符号。针对这一问题,我们通过讨论得出:只要不是具体数值,无论是符号,还是任意字母,都可以表示未知数。第二、学生的思维定势在作祟。因为一直以来我们的题目都是单选,没有多选的,导致学生不能肯定是写等式、方程,还是两个都写呢?当然第二方面也是由于学生理解概念不扎实、透彻,只有通过不同变式练习的辨析,学生才能逐步认清等式与方程的"真面目"。

从中,我也深知教学不能只是灌输,而是要边教边学,在教学中及时发现问题,寻找原因,解决问题,达到提升学生的知识与能力,培养学生思维的最终目的。

反思三:等式与方程教学反思

《等式与方程》这节课的教学内容较为简单,重点内容是认识方程和方程与等式之间的关系。我在教学这节课内容时通过例1的教学让学生自己>总结出什么是等式:含有等号的式子叫等式。再区别等式与我们以前的算式,如8+2是算式,而8+2=10就是等式。

例2是让学生观察天平写出算式,再根据天平的指针是否指向0刻度线来判断左右两边的算式是否相等。接下来回答课本上的问题:"那些是等式?"学生很容易就能回答出右

边的两个是等式。那左边的两个叫什么呢?学生们思考了一下,没有一个人能回答的出来,此时我告诉学生这叫不等式。当学生们听了"不等式"三个字之后都笑了,当时我还没有反应过来,当我再说到"不等式"时,我明白学生们为什么会笑了,他们以为我说的是"不懂事",所以我立马把"不等式"三个字写到黑板上,原来闹了一个小笑话。

对于方程的定义:含有未知数的等式叫方程,学生们明白定义中的关键字是未知数和等式,明白了这点我再问例1中的等式50+50=100是方程吗?学生们说不是,因为没有未知数。方程与等式之间有什么关系?指名几位学生回答,一般都能明白,但语言表述的不是很清晰,最后葛晨曦和赵龙新总结说:方程肯定是等式,但等式不一定是方程,总结的很好。

"练一练",让学生自己写一些方程,通过指名回答,发现学生们的方程一般都是5X=60、12+X=30等,考虑到学生是否以为未知数只能表示正数?所以我在黑板上写了这样一个等式让学生判断它是否是方程:2+X=0,学生们纷纷说不是,我说它符合方程的定义吗?学生若有所思的说符合,原来未知数还可以表示负数。我接着问未知数除了可以表示正数和负数还可以表示什么?分数和小数,于是我要求他们再写几个未知数能表示分数、小数和负数的方程。未知数我们可以用任何一个字母来表示,但我们习惯性用字母X来表示。等式X+Y=20是方程吗?学生们基本上都能回答"是",原因是因为有上面的思考,对于判断是否是方程,学生们会看方程的定义来判断。

下课后,有学生问我,这样的等式后面要写单位吗?这是我在上课时忽略的地方,含有未知数的等式也就是方程列出来之后,后面不需要带单位。

反思四:等式与方程教学反思

《等式与方程》是五下第一单元的第一课时,本课是在学生完成整数、小数的认识及四则运算的学习,学生已经积累了较多的数量关系知识,并且学生已经学会了用字母表示数的基础上教学的,学生有能力理解并掌握方程这一重要的数学思想方法。上课之前我先根据班级学生情况设计了教案和课件,希望在课上能根据教案的安排来教学,对于本节课的重点内容等式与方程的关系希望通过学生小组讨论来解决,而对于本节课的难点方程的计划让学生自己举例来强化记忆。课上也是通过这样的思路进行教学的,但教学过程中还是出现了很多问题,学生作业中也出现了一些意想不到的错误,先

分析本节课中出现的几个主要问题。

1、提出的问题指向性不明,学生不知如何作答。在教学例1的时候,学生写出了

50+50=100的时候,我指名这样的式子叫做等式,并提出"等式与我们之前所学习的式子有什么区别?"学生不知如何作答,课后想一想,这样的问题学生确实不好回答,之前学习50+50=100是按加法算式计算来理解的,但今天又把这样的式子叫做等式,所以学生不知道从哪里进行比较。包括之前学生写出50+50=100的时候,我让学生说这样

《等式与方程》教学反思11

本节课中学生学习等式的性质是没有多大的难度的,在运用等式的性质进行解方程时,难度也不是很大。课本安排了不少解方程的题目,学生都能一一解决。仔细观察课本,其实会发现课本上在慢慢增加根据具体情境列出方程并解方程的题目。这是本单元的难点,这就需要让学生根据题目中的等量关系来写出方程。将等量关系写出方程和学生之前根据等量关系解答是不同的。

学生不太习惯,导致列的方程奇形怪状。这里有必要深入探究方程的含义。根据上节课的学习学生知道:方程是从等式演变而来。含有字母的等式才叫作方程。换言之,方程其实是一种含有未知量的等量关系的一种表达式。我们只需要将等量关系找到再将其表达成方程即可。学生出现问题的原因是以往大部分的解题经验所写出的等量关系是从结果出发来写的,一切为结果服务这样一种逆向的思维过程。而现在写出题目中的等量关系却是从条件出发的一种正向思维。

虽然在三年级时,我们学习了从条件出发和问题出发两种不同的解题策略,但这离帮助学生形成这两种思维还是远远不够的。通过这样的分析,那我们在引导孩子列方程时,就要从条件出发,找等量关系来列方程了。先要帮助学生找出等量关系,在引导孩子根据等量关系表达出相应的方程。这一点的学习时必须的。

《等式与方程》教学反思12

在学习方程的意义时,首先先让学生进一步认识等式,虽然学生在以前的学习中一直接触等式,但是都是如何进行算式的具体运算上,得数只是作为运算的结果,写在等号后面而已。教材利用天平来写出等式,了解等式的结构。再引导学生观察所写的等式,交流等式和方程的关系,通过交流使学生体会等式和方程是包含于被包含的关系,方程是一类特殊的等式。

在教学过程中,我通过师生合作,生生合作的形式,不仅使学生充分经历了探索、发现和应用知识的过程,初步建立起关于等式和方程的概念,了解他们之间的关系,而且使学生在学习过程中体验到成功的愉悦,激发他们对数学学习的兴趣。

《《等式与方程》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式